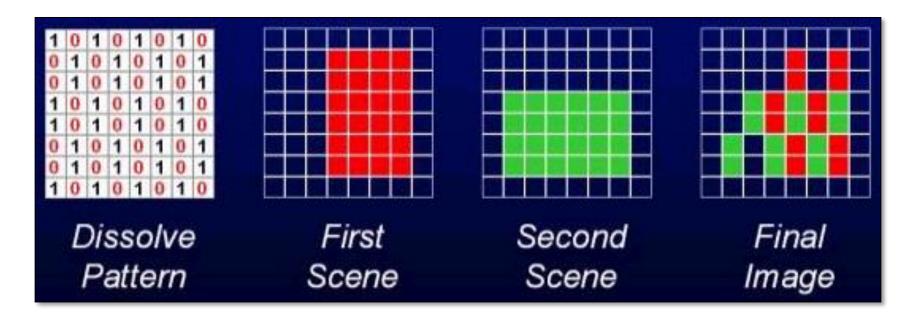
Stencil-Buffer und Stencil-Test

- mithilfe des Stencil-Tests kann ebenfalls entscheiden werden, ob ein Fragment gezeichnet wird, z.B. Vergleich des Stencil-Werts im Buffer mit einem Referenzwert
- typische Anwendungen
 - Maskierung von Bildteilen
 - projektive Schatten und Schattenvolumen
 - Stencil-Routing



Stencil-Test und Tiefentest

Reihenfolge der Fragment-Tests (Alpha-Test nur in klassischen OpenGL)

```
if ( fragment.alpha alphafunc refalpha )
  if ( buffer.stencil stencilfunc refstencil ) {
    if ( fragment.depth depthfunc buffer.depth ) {
      // es kann mehrere Color-Buffers in einem
      // Backbuffer geben
      foreach colorbuffer
        // hier würde noch Blending stattfinden
        buffer.color = fragment.color;
      buffer.depth = fragment.depth;
      buffer.stencil = zpass();
```

Stencil-Test und Tiefentest

Reihenfolge der Fragment-Tests (Alpha-Test nur in klassischen OpenGL)

```
if ( fragment.alpha alphafunc refalpha )
  if ( buffer.stencil stencilfunc refstencil ) {
    if ( fragment.depth depthfunc buffer.depth ) {
      // es kann mehrere Color-Buffers in einem
      // Backbuffer geben
      foreach colorbuffer
        // hier würde noch Blending stattfinden
        buffer.color = fragment.color;
      buffer.depth = fragment.depth;
      buffer.stencil = zpass();
    } else
      // Stencil&Alpha bestanden, Tiefentest nicht
      buffer.stencil = zfail();
  } else
    // Stencil Test nicht bestanden
    buffer.stencil = fail();
```

Stencil-Test cont.

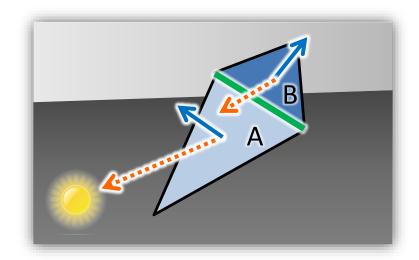
Konfiguration des Stencil-Tests

- Stencil-Test festlegen
 glStencilFunc(stencilfunc, refstencil, mask)
 - vergleiche mit Referenzwert in maskierten Bits GL_ALWAYS, GL_NEVER, GL_LESS, GL_EQUAL, ...
- Änderungen im Stencil-Buffer je nach dem, ob der Stencil-Test bestanden und der Tiefentest bestanden wurde oder nicht glStencilOp(fail, zfail, zpass)
 - mögliche Funktionen:
 GL_KEEP, GL_ZERO, GL_INCR, GL_DECR, GL_INVERT, GL_REPLACE
- Beispiele
 - zeichne Maske in den Stencil-Buffer
 glStencilFunc(GL_ALWAYS, 0x1, 0x1);
 glStencilOp(GL_REPLACE, GL_REPLACE);
 - zeichne Objekte nur dort, wo Stencil ungleich 1
 glStencilFunc(GL_NOT_EQUAL, 0x1, 0x1);
 glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
 }

Schattenvolumen eines Dreiecksnetzes

Bestimmung der Objektsilhouette

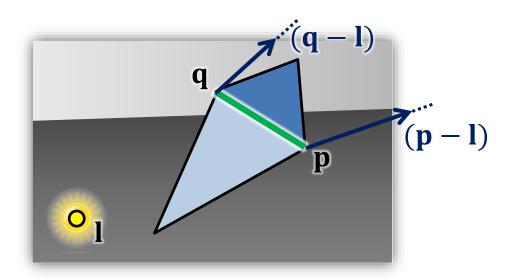
- Annahme: geschlossene Dreiecksnetze ("watertight", 2-manifold)
- zur Silhouette gehören Kanten von deren angrenzenden Dreiecken eines zur Lichtquelle zeigt und eines von der Lichtquelle abgewandt ist
- Vorgehen:
 - bestimme für jedes Dreieck, ob es zur LQ oder davon weg zeigt (Skalarprodukt zwischen der Dreiecksnormale und dem Vektor zur LQ)
 - betrachte jede Kante und ihre zwei benachbarten Dreiecke A und B:
 - zeigt A zur LQ und B zeigt weg (oder umgekehrt)
 - → Kante ist Teil der Silhouette



Schattenvolumen eines Dreiecksnetzes

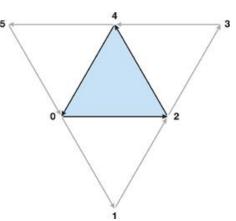
Oberfläche des Schattenvolumens

- \triangleright sie die Kante \overline{pq} Teil der Silhouette
 - extrudiere pq weg von der Lichtquelle ins Unendliche
 - ▶ dadurch entsteht eine viereckige Seitenfläche des Schattenvolumen mit den Eckpunkten \mathbf{p} , \mathbf{p} + ∞ · (\mathbf{p} − \mathbf{l}), \mathbf{q} + ∞ · (\mathbf{q} − \mathbf{l}) und \mathbf{q}
 - Punkte im Unendlichen durch homogene Koordinaten dargestellt
- und: alle zur LQ gewandten Dreiecke sind ebenfalls Teil des Schattenvolumen



Berechnung der Silhouette auf der GPU

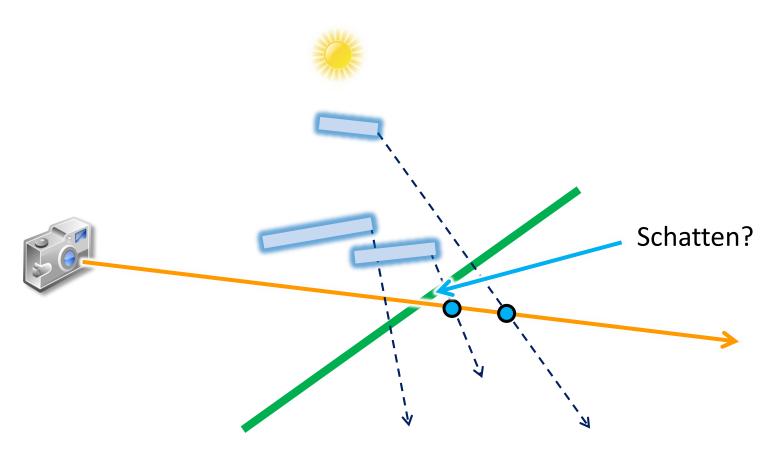
- wie berechnet man die Silhouette effizient?
- Geometry Shader:
 - im GS ist es möglich auf Nachbardreiecke zuzugreifen, wenn die entsprechenden Indizes der Vertices angegeben werden
 - man zeichnet Primitive vom Typ GL_TRIANGLES_ADJACENCY_EXT und übergibt pro Dreieck 6 Vertices statt 3
 - zur Erinnerung: im GS greift man auf die Vertices
 zu mit gl_PositionIn[]
 - Eingabe: Dreieck mit Nachbardreiecken
 - Ausgabe: Seitenflächen des Schattenvolumen und das Dreieck selbst (wenn es zur LQ zeigt)



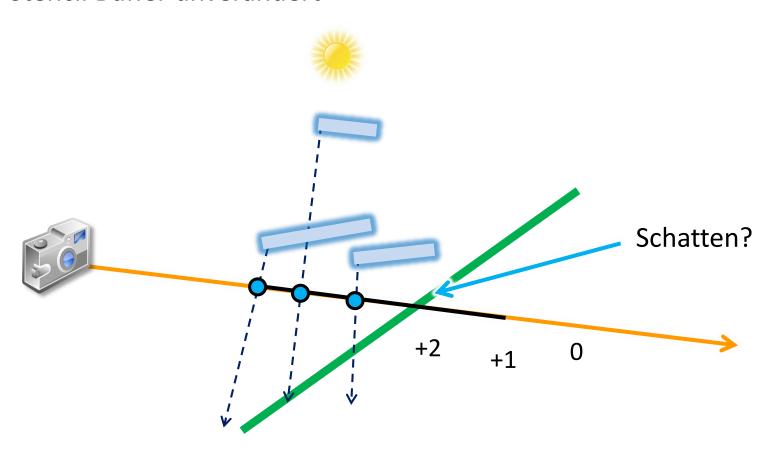
detaillierte Beschreibung dieser Technik: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch11.html

- die Probleme aufgrund des Zählens im Stencil Buffer kann man beheben mit dem sogenannten z-fail Algorithmus
- im Prinzip handelt es sich um eine andere Render- und Zählstrategie:
 - zeichne Szene (wie bisher)
 - maskiere anschließend Schreibzugriffe auf den Z-Buffer (wie bisher)
 - zeichne zuerst die Rückseiten der Schattenvolumen
 - inkrementiere Stencil Buffer, wenn der Tiefentest fehlschlägt (z-fail)
 - zeichne dann die Vorderseiten der Schattenvolumen
 - dekrementiere Stencil Buffer, wenn Tiefentest fehlschlägt
 - Resultat: Pixel mit einem Stencil-Wert > 0 befinden sich im Schatten
- Everitt et al.: "Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering", GDC 2002

- was macht der z-fail Algorithmus?
 - anschaulich: er zählt Ein- und Austrittspunkte von hinten nach vorne
 - Eintrittspunkte sind an den Rückseiten, Austrittspunkte an den Vorderseiten der Schattenvolumen
 - hier: der Zähler hat den Wert 2 nach dem Zeichnen der Rückseiten



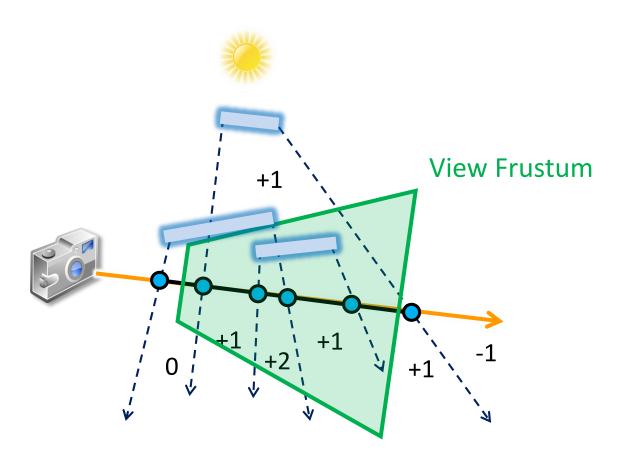
- was macht der z-fail Algorithmus?
 - > anschaulich: er zählt Ein- und Austrittspunkte von hinten nach vorne
 - nach dem Zeichnen der Vorderseiten: Zähler bleibt bei 2
 - alle Vorderseiten bestehen den Tiefentest, deshalb bleibt der Stencil Buffer unverändert



Schattenvolumen: z-pass und z-fail

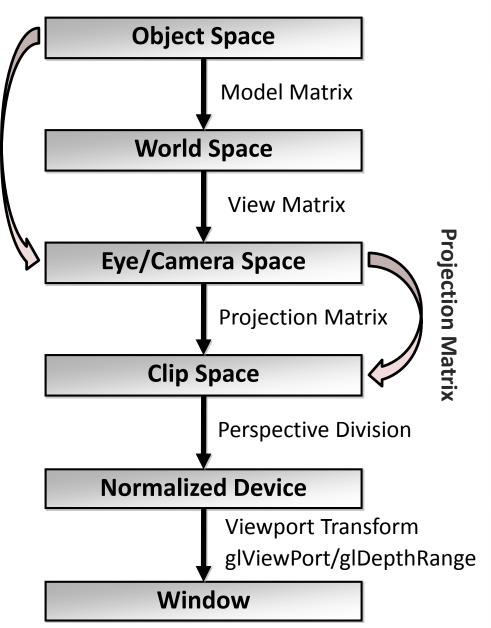
- Unterschied z-pass (Original) und z-fail
 - z-pass modifiziert Stencil Buffer, wenn der Tiefentest bestanden wird
 - > zählt Eintritts-/Austrittspunkte vor dem Oberflächenpunkt
 - schwierig, wenn Eintritts-/Austrittspunkte vor der Near Plane sind
 - > z-fail modifiziert Stencil Buffer, wenn der Tiefentest fehlschlägt
 - > zählt Eintritts-/Austrittspunkte hinter dem Oberflächenpunkt
 - schwierig, wenn Eintritts-/Austrittspunkte hinter der Far Plane sind

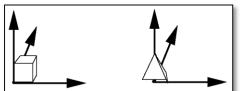
- bisher haben wir das Problem der Startwerte nicht gelöst
 - eine Initialisierung der Zähler für den z-fail Algorithmus ist nötig, wenn ein Schattenvolumen hinter der Far Plane liegt
- was haben wir damit gewonnen?

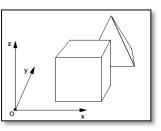


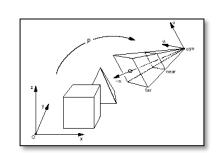
Koordinatensysteme

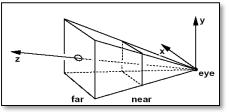
ModelView Matrix

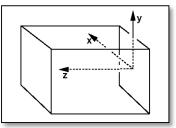


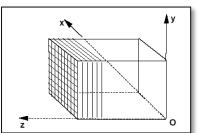












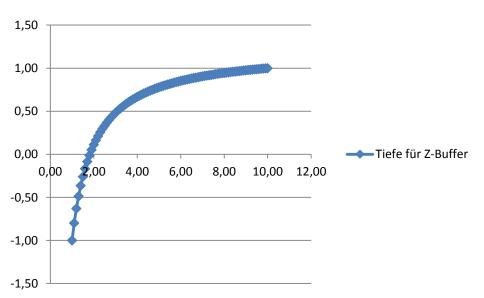
Mehr Infos: http://www.opengl.org/ resources/faq/technical/ viewing.htm

http://www.songho.ca/opengl/gl_transform.htn\$

- die Lösung ist einfach: verschiebe die Far Plane ins Unendliche!
- eine Projektionsmatrix erzeugt mit glFrustum(1,r,b,t,n,f)

$$\begin{pmatrix}
2n(r-l) & 0 & (r+l)/(r-l) & 0 \\
0 & 2n(t-b) & (t+b)/(t-b) & 0 \\
0 & 0 & -(f+n)/(f-n) & -2fn/(f-n) \\
0 & 0 & -1 & 0
\end{pmatrix}$$

- Abbildung der Tiefe (hier: horiz. Achse) auf den Tiefenwert (vert. Achse)
 - Near Plane n = 1, Far Plane f = 10



was passiert in der Projektionsmatrix, wenn wir die Far Plane ins Unendliche verschieben, also $f \to \infty$?

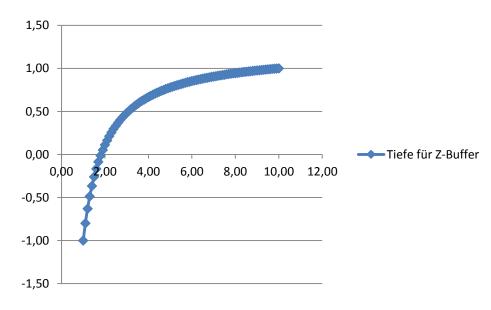
$$\begin{pmatrix}
2n(r-l) & 0 & (r+l)/(r-l) & 0 \\
0 & 2n(t-b) & (t+b)/(t-b) & 0 \\
0 & 0 & -(f+n)/(f-n) & -2fn/(f-n) \\
0 & 0 & -1 & 0
\end{pmatrix}$$

- $ightharpoonup rac{f+n}{f-n} o 1$ und $rac{2fn}{f-n} o 2n$
- Anm. die Vorzeichen in der Matrix sind durch die OpenGL Konvention vorgegeben
- für die Matrix ergibt sich dementsprechend:

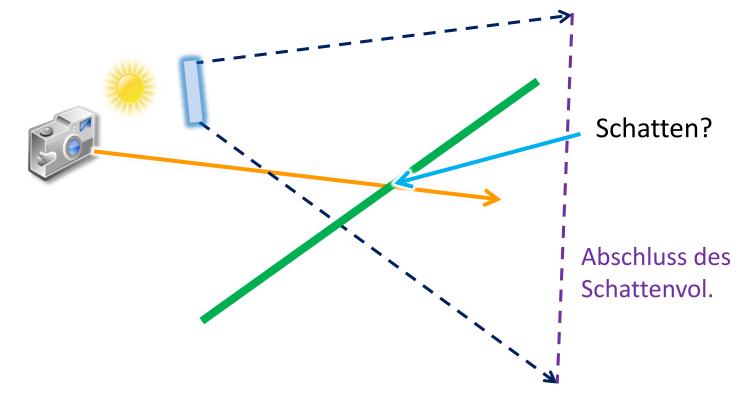
- > zur Probe betrachten wir einen Punkt im Raum mit der Entfernung $|z_c|$ vor der Kamera (in OpenGL ist $z_c < 0$)
 - ▶ der resultierende Tiefenwert ist $z' = \frac{-z_c 2n}{-z_c} = 1 + \frac{2n}{z_c}$
 - \triangleright für $|z_c| \rightarrow \infty$: $z' \rightarrow 1$
- > Far Plane repräsentiert also tatsächlich unendlich weit entfernte Punkte
 - der Genauigkeitsverlust im Tiefenpuffer (für andere entfernte Flächen) ist akzeptabel, da die Abbildung der Tiefe ohnehin nicht linear ist

wichtig für den z-fail Algorithmus ist nur: die Flächen werden

tatsächlich rasterisiert



- einen "pathologischen Fall" gibt es noch zu beachten:
 beim z-fail Algorithmus müssen die Schattenvolumen auch "hinten" geschlossen sein
 - hinter dem betrachteten Punkt auf der grünen Fläche würde sonst nie ein Fragment rasterisiert werden, das den Tiefentest nicht besteht
 - deshalb hat das Schattenvolumen eine Rückseite



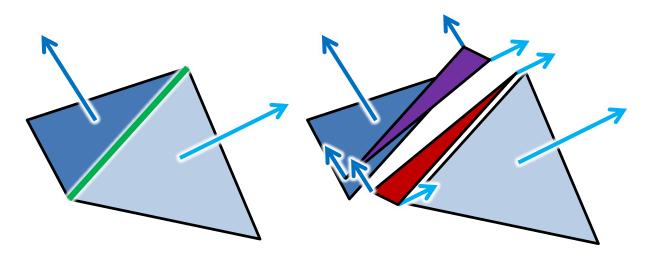
Geometry Shader


```
varying vec3 normal;
void main() {
    gl_Position = gl_Vertex;
    normal = gl_Normal;
}
```

```
varying in vec3 normal[];
void main() {
    for ( int i = 0; i < gl_VerticesIn; i++ ) {
        gl_Position = gl_ModelViewProjectionMatrix * gl_PositionIn[ i ];
        ...
        gl_FrontColor = vec4( kd );
        EmitVertex();
    }
    EndPrimitive();
}</pre>
```

Berechnung der Silhouette auf der GPU

- wie berechnet man die Silhouette effizient?
- Vertex Shader:
 - der Trick erfordert einen Vorbereitungsschritt: erzeuge zwei "degenerierte" Dreiecke (Flächeninhalt 0) an jeder Kante
 - verwende die Normale der jeweiligen Dreiecke für die Vertizes dieser Dreiecke
 - extrudiere im Vertex Shader alle Vertizes, deren Normalen von der Lichtquelle weg zeigen
 - Nachteil: deutlich mehr Dreiecke wie viele denn eigentlich?



Euler-Formeln

- \blacktriangleright beschreiben den Zusammenhang zwischen Anzahl der **Vertizes** V, **Kanten/Edges** E und **Facetten** F eines konvexen Polyeders
 - einfache (konvexe) Polyeder

$$V-E+F=2$$

Polygonnetz mit Rand

$$V - E + F = 1$$

- \triangleright die Zahl $\chi = V E + F$ heißt Euler-Charakteristik eines Polyeders
 - \triangleright gleiches χ kennzeichnet topologisch äquivalente Polyeder
- wenn Sie der Beweis interessiert:
 - "Nineteen Proofs of Euler's Formula" http://www.ics.uci.edu/~eppstein/junkyard/euler/

Euler-Formeln

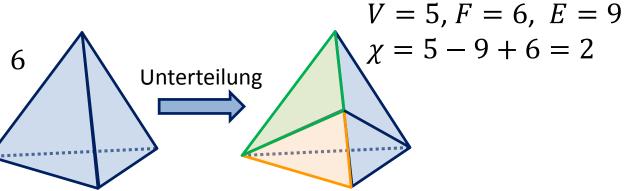
- ightharpoonup beschreiben den Zusammenhang zwischen Anzahl der **Vertizes** V, **Kanten/Edges** E und **Facetten** F eines konvexen Polyeders
 - einfache (konvexe) Polyeder

$$V-E+F=2$$

Beispiel: Tetraeder

$$V = F = 4 \text{ und } E = 6$$

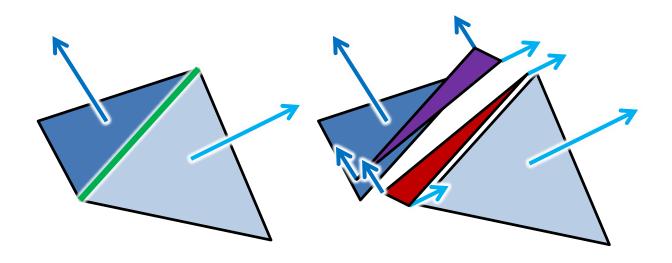
 $\lambda \chi = 4 - 6 + 4 = 2$



- Beispiel: geschlossenes Dreiecksnetz
 - jedes Dreieck besitzt 3 Kanten
 - jede Kante besitzt 2 Nachbardreiecke
 - insgesamt gibt es $^2/_3$ so viele Dreiecke wie Kanten, also $F = \frac{^2}{^3}E$ bzw. 1.5 mal so viele Kanten wie Dreiecke

Berechnung der Silhouette auf der GPU

- wie berechnet man die Silhouette effizient?
- Vertex Shader:
 - erzeuge zwei "degenerierte" Dreiecke (Flächeninhalt 0) an jeder Kante
 - Nachteil: deutlich mehr Dreiecke wie viele denn eigentlich?
 - ightharpoonup insgesamt gibt 1.5 mal so viele Kanten wie Dreiecke, also $E=rac{3}{2}F$
 - ▶ für jede Kante erzeugen wir 2 neue Dreiecke, also hat das Dreiecksnetz insgesamt $F + 2 \cdot \frac{3}{2}F = 4F$ Dreiecke!

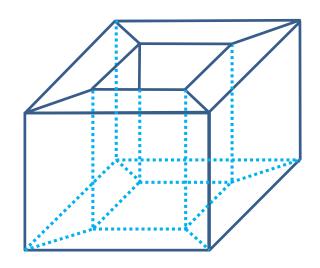


Erweiterte Euler-Formel

- ightharpoonup ...beschreibt den Zusammenhang zwischen Anzahl der **Vertizes** V, **Kanten/Edges** E und **Facetten** F eines Polyeders
- Körper mit Löchern und Bohrungen (z.B. Torus)

$$V - E + F - H = 2(C - G)$$

- H Anzahl der Löcher in Facetten (holes)
- C Anzahl der miteinander verbundenen Komponenten (connected components)
- G Anzahl der Bohrungen durch den Körper (Genus)
- Beispiel:



$$V - E + F - H = 2(C - G)$$

16 32 16 0 = 1 1

Schattenvolumen Tricks

- ein Trick um ein Schattenvolumen in einem Vertex Shader zu erzeugen: zeigt die Normale eines Vertex von der LQ weg, dann bewege ihn von der LQ weg ins Unendliche
- wird ein Dreiecksnetz (ohne Vorverarbeitungsschritt) mit diesem Shader gezeichnet erhalten wir direkt ein approximatives Schattenvolumen
 - nur für geschlossene, ausreichend tessellierte Dreiecksnetze

